Native .NET Apps
for the Mac App Store

Michael Hutchinson

mjhutchinson.com
twitter.com/mjhutchinson
m.j.hutchinson@gmail.com

What is Mono?

.NET everywhere
Compatible and current
Vibrant ecosystem

Free and open-source

CLI virtual machine, class libraries and ecosystem
Compatible with .NET 4.0 — no need to recompile
Use .NET languages, libraries and tools

Works on many platforms

Free and open-source

What is MonoMac?

Mac Apps with Mono
Native Mac APIs

Mac App Store

Provides access to native Mac APIs from Mono

Build native Mac apps with .NET

Bridge to Objective-C

Full access to Cocoa and other Mac APIs from C# and
other .NET languages

Build apps for the Mac App Store

Why Use MonoMac?

Truly Native Experience
.NET languages, libraries, tools

Use existing code and experience

* CH, F#, VB.NET, IronPython, etc.
* Garbage collector, safe managed runtime
* LINQ, Web Services, etc.

Cross-Platform Apps

Native experience

native Ul toolkit

Shared code, business logic,
libraries, models

Toolkits Everywhere

MonoMac Mono for Android
WPF/Winforms GTK#

MonoTouch Silverlight

MonoMac = Mac
* MfA = Android
* Winforms = Windows,
e GTK# = Linux
MonoTouch =i0S
* Silverlight = WP7/Web

MonoDevelop

Mono and .NET
Excellent C# support
Compatible with VS
Open-source

Very extensible

IDE for Mono and .NET

Runs on Mac, Linux and Windows
Excellent C# support

Compatible with Visual Studio
Open-source and extensible

Getting MonoMac

1.Mono
2.MonoDevelop

3.MonoMac addin

On a clean, fresh Mac
1. Install Mono and MonoDevelop

2. Open the MonoDevelop Addin Manager
3. Install the MonoMac Addin
4. Create, build and run MonoMac project

(S NONG) Add-in Manager
[Installed ¥ Updates C,,,_) Gallery
Repository: | All repositories o} @ MonoMac
Version 2.6.0.4
b Debugging Download sizd
Available in re
b GTK MonoDevelop A
P Mobile Development
Support for
< Mac Development applications
*’ Support for dloplng MonoMac applications
(& More inf
¥ Install...
Install from file...

Demonstration

Creating a simple MonoMac app

Mac App Bundles

Structured directories

MonoMac projects in MD
create and debug apps

Cocoa bundle resources

Mac apps are bundles, structured directories

* Info.plist manifest file

* Resources
MonoMac projects in MD create and debug App Bundles
Many Cocoa APIs deal with bundle resources
Files in a MonoMac project with Content build action are
copied into app bundle
Localizable via Iproj bundles

10

Objective-C

C with Smalltalk -style messaging
Dynamic resolution
Selectors, instances, protocols

Delegate and action/target patterns

* Objective-C is C with Smalltalk-style messaging
* Separate interface (.h) and implementation (.m)
* Send message to instance or class with objc_MsgSend
* selector (method name) resolved at runtime
* Classes can have instance fields, like a C struct
* Subclasses can override, handle messages before superclass (base)
* Messages are dynamic
* Can query whether an object recognizes a selector
* Can handle unknown selectors
* Protocols are like interfaces
* But with some methods optional
* Common pattern is for an object to have a “delegate”, an instance conforming to
some protocol.
* Delegate is used like a controller or listener class
* No relation to .NET delegates

11

How does it work?

Objective-C bridge
Foundation classes
Binding generator

APl wrappers

* MonoMac runtime bridges Objective-C and .NET
* Selectors, models, foundation classes, etc.
* Full support for creating and extending/subclassing Obj-
C classes from .NET
* MonoMac has wrappers for Cocoa and other Obj-C libraries
* Can also create new wrappers with the bmac tool
* Bindings for pure C APIs use P/Invoke

12

Implementing Obj-C Classes

[Register(

{
() {}

handle) : (handle) {}

[Export ()]
SomeClass (coder) : (coder) {}

[Export()]
SomeMethod (argl, arg2) {}

EncodeTo (coder) {}

13

Binding Goals

Easy to use, powerful
.NET conventions and patterns
Consistent and predictable
Everything without BCL equivalent

Stronger typing

Make the Cocoa and Obj-C APIs easy to use from C#
* Without preventing advanced uses
Map Obj-C names to .NET conventions in a consistent and predictable way
* Cocoa knowledge maps to/from MonoMac
Bind only APIs that don’t have portable .NET equivalents
* Unless perf or APIs dictate otherwise
Make the API more strongly typed
Transparently convert types where possible
* E.g. NSString in Obj-C becomes System.String in .NET
Convert constants to enums
* Enables IDE to provide better code completion
Map Obj-C “delegates” to .NET events
* Strongly and weakly typed delegates for advanced use
Expose .NET delegates to Obj-C as “blocks”

14

Object Lifetime

Managed NSObject has native backing
Reference-counted
IDisposable is deterministic
Native objects don’t retain managed objects

Wrappers have identity

* Every managed class instance derived from NSObject is backed by corresponding
native ObjC instance
* Objective-C NSObject is reference-counted
* pretainincrements, release decrements
* dealloc when count reaches zero
* Every managed instance has reference to native instance
* Releases it when garbage-collected
* Be careful to hold references to things you need to keep
* Base NSObject wrapper is IDisposable
« Can explicitly release reference with Dispose () or C#using
statement
* Each native instance pointer is surfaced as a single wrapper class instance
* Runtime.GetNSObject unwraps IntPtr handle

15

Foundation

MonoMac.Foundation

NSString, NSArray, NSDictionary, NSUrl,
NSNumber, etc.

Transparent mapping

Prefer BCL types

MonoMac.Foundation contains core types from Obj-C

* NSString, NSArray, NSDictionary, NSUrl, NSNumber, etc.
Most APIs transparently map these to C# types
Use .NET BCL types unless good reason to do otherwise

* But sometimes need direct access for advanced uses
MonoMac.CoreFoundation contains CFString, etc.

* Used by some C-based Mac APlIs

* Toll-free bridged to NS* equivalents, Handles are

interchangable

16

MonoMac APlIs

AppKit

CoreAnimation

CoreGraphics

CoreText
WebKit
PdfKit
AddressBook

MonoMac.AppKit

Ul toolkit
MonoMac.CoreGraphics

Drawing
MonoMac.Corelmage

Image processing
MonoMac.CoreAnimation

Animation and compositing
MonoMac.CoreText

Text rendering
MonoMac.OpenGL, OpenTK

3D rendering

Security
Corelocation
QTKit
OpenGL
OpenTK
Corelmage

Growl

MonoMac.QTKit

Quicktime Media
MonoMac.PdfKit

PDF viewing, annotations, etc
MonoMac.Security

Mac security framework
MonoMac.WebKit

Web browser, HTML, JS

AddressBook, AudioToolbox, AudioUnit,
CoreData, Corelocation, CoreMedia,
CoreVideo, CoreWlan, Growl, ImagelO,
ImageKit, QuartzComposer...

17

Cocoa AppKit

NSApplication, NSWindow, NSDocument
NSView, NSControl
NSTextField, NSButton
NSTableView, NSTableViewDataSource,

NSTableViewDelegate,
NSTableViewSource

* NSApplication

* Single instance, NSApplication.SharedInstance

* Application-wide menu bar and dock icon
* NSDocument

* Window and behaviors for document-centric apps
* NSControl

* Base class for controls

* Absolute layout, y direction is not what you expect
* NSTableView

* NSTableViewDataSource (Model)

* NSTableViewDelegate (Controller)

* NSTableViewSource (Model & Controller)
* NSMenu

* Global app-wide menu

* Context menus

18

Interface Builder

Integrated into Xcode
xib/nib files
Deserialized using NSCoder

Outlets and Actions

* Apple’s GUI designer for Cocoa AppKit
 Edits xib/nib files
* Now integrated into Xcode
* Objects deserialized from the nib file at runtime
* Deserialized using NSCoder
* Connected using outlets and actions
* Can put locale-specific version of nibs in lproj

19

Distribution

Mac App Store apps must be self-contained
Create Mac Installer command in MD
Signing, packaging, linker

Just enough Mono

* App Bundles created by MonoDevelop depend on a system
installation of Mono

* Mac App Store apps can have no external dependencies

* Use Create Mac Installer command in MD

Include Mono in the app bundle

Use Mono Linker to include “just enough Mono”

Create a Mac installer package for the app

Sign the app and the installer

Any combination of the above

20

Mac App Store

Mac Developer Program - $99/year
Follow Apple’s instructions
Create Mac Installer
Upload to the App Store
2797

Profit!

Join Apple’s Mac Developer Program, $99/year
Follow Apple’s instructions
* Register the App ID
* Create signing keys for app and installer
Use Create Mac Installer in MonoDevelop
* Signed app, signed package, no external dependencies
Upload to the App Store
2?7
Profit!

21

Open Community

Core open-sourced from MonoTouch

Bindings, tutorials, samples by the
MonoMac community

mono-osx@lists.ximian.com

#monomac on irc.gimp.net

22

Resources

Getting started, tutorials, docs
http://mono-project.com/MonoMac

Samples in the git repository
https://github.com/mono/monomac

Cocoa books and Apple Cocoa docs

* http://mono-project.com/MonoMac

* Samples in the git repository
* https://github.com/mono/monomac

* Cocoa books and Apple Cocoa docs apply to MonoMac too
* If you canread a little Obj-C

23

Questions?

24

C# vs. Objective-C
c ObjectveC |

instance.InstanceMethod();
instance.Method(arg);
instance.Method(argl, arg2);
this.Method();
base.Method();
SomeClass.StaticMethod();
foo = new SomeClass();

foo = new SomeClass(arg);
null

void Foo()

static void Foo();

RetType Foo(A argl, B arg2);

[instance instanceMethod];

[instance methodWithArg:arg];

[instance methodWithArgl:argl andArg2:arg2];
[self method];

[super method];

[SomeClass classMethod];

foo = [[SomeClass alloc] init];

foo = [[SomeClass alloc] initWithArg:arg];
nil

- foo;

+ foo;

- (RetType) fooWithArg:(a)argl andArg2:(b)arg2;

25

Advanced Bridging

MonoMac.ObjcRuntime is where the magic is:

var cls = new Class ("SomeObjcClass");

var sel new Selector ("someMethodWithCount:andText:");

var str = new MonoMac.Foundation.NSString ("Hi");

IntPtr handle = Messaging.IntPtr_objc_msgSend_int_IntPtr (
cls.Handle, sel.Handle, 5, str.Handle);

NSObject obj = Runtime.GetNSObject (handle);

is equivalent to:

NSObject *obj = [SomeObjcClass someMethodWithCount: 5 andText

T @"Hi"]

26

